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The determination of Poisson's ratio 
compliances for polyethylene terephthalate 
sheets using a Michelson interferometer 

I. W l L S O N * , A .  C U N N I N G H A M  t,  I. M. W A R D  
Department of Physics, University of Leeds, Leeds, UK 

Two of the Poisson's ratio compliances have been determined for oriented polyethylene 
terephthalate (PET) sheet. The method adopted was to determine the fringe shift under 
load when the specimens were placed in one arm of a Michelson interferometer operating 
in a vertical fringe mode. Data obtained for the specimens in air and in a water bath, with 
two polarization directions, can be used to provide two independent measurements of 
each compliance. Good agreement was shown between these measurements, and the 
values for the compliance constants are reasonable on physical grounds, as well as being 
consistent with previous work on PET fibres. 

1, Introduction 
The determination of the Poisson's ratios of 
oriented polymers is often a vital link in the infor- 
mation required to formulate any understanding 
of their mechanical behaviour in terms of their 
structure. Poisson's ratios can also play an im- 
portant part in the deformation which occurs in 
technological situations, for example, where poly- 
mers are being used in conjunction with other 
materials in some engineering application. 

In spite of these considerations, there are com- 
paratively few investigations in this area. Some 
of the most extensive wosk has been carried out 
by Saunders and co-workers on uniaxially oriented 
low-density polyethylene sheets [ 1 -3 ] .  The tech- 
nique was based on a lateral contraction extenso- 
meter, in which rigid feelers rested lightly against 
the specimen sides. A contemporaneous investi- 
gation, also on uniaxially oriented low-density 
polyethylene, was that of Ladizesky and Ward [4], 
who measured photographically the deformation 
of a fine pattern of grid lines deposited on the 
sheet surface by vacuum deposition of aluminium. 

There are a number of earlier determinations 
of the Poisson's ratios for polymer fibres and 
monofilaments. These involve the techniques of 
optical diffraction and mercury displacement 
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adopted by Davis [5] and Frank and Ruoff [6], 
respectively, for nylon fibres. More extensive 
studies on nylon, polyethylene, polyethylene 
terephthalate and polypropylene were also made 
by the transverse compression of monofilaments 
[7 -9 ] .  

In the present paper, we describe the determi- 
nation of two of the three Poisson's ratio com- 
pliance constants for one-way drawn polyethylene 
terephthalate sheets. As the sheet is transparent, 
with a high degree of optical clarity and a con- 
veniently small thickness, it was considered appro- 
priate to use an optical interference technique 
where high accuracy (~  wavelength of light) can 
be obtained. 

The results are of interest in that they com- 
plement previous measurements of extensional and 
shear compliances of similar sheets [10] and also 
relate to the earlier studies of mechanical aniso- 
tropy of polyethylene terephthalate fibres and 
monofilaments. 

2. Theory 
2.1. Elastic constants 
The mechanical properties of an anisotropic elastic 
solid for small strains can be defined by the gen- 
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eralized Hooke's law relating strains % to stresses 
(lq 

ep = Svq %,  % = Cqpep (1) 

where Spq, Cqv are the compliance and stiffness 
constants respectively, and p, q, take values 1, 
2 . . . .  6. In the present study and polymer is sub- 
jected to constant load, and the corresponding 
strains are measured. It is therefore convenient to 
work in terms of the compliance constants Svq. 

The one-way drawn polyethylene terephthalate 
sheets possess orthorhombic symmetry. This has 
been discussed in detail elsewhere [10, 11]. There 
are, therefore, nine independent compliance con- 
stants. We choose a set of Cartesian axes 1, 2, 3; 
such that the 3 direction is parallel to the initial 
draw direction and the 1 direction is in the plane 
of the sheet perpendicular to the initial draw 
direction. The compliance matrix is then 

11 S12 S13 0 0 0 

812 $22 823 0 0 0 

I $13 $23 $33 0 0 0 
/ 

l i  0 0 $44 0 0 
0 0 0 Sss 0 

0 0 0 0 866 (2) 

and the Poisson's ratio compliance constants are 
S12, $13 and S2a. In this paper we are concerned 
with the measurement of Sx2 and $23 only. 

2.2. The photoelastic experiment 
Consider that a sample of thickness t is inserted 
into one arm of an interferometer, which has air 
only in both paths, to produce rn fringe shifts 
where 

mX = (n i -- 1)2t (3) 

n i is the refractive index of the sample in the direc- 
tion of the electric vector of the polarized mono- 
chromatic light at the wavelength X. When the 
sample extends under load, the resultant fringe 
shift Am is given by 

2 
Am = ~ [(ni -- 1)At + tAni] (4) 

where At, An i are the changes in thickness and 
refractive index respectively. 

For an applied stress o applied along the initial 
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draw direction 3, the resultant change in thickness 
At3 

A t  3 -= $23t03 .  (5a) 

Similarly for a stress o applied along the 1 direction 
we have 

At1 = $21tOl. (5b) 

The situation regarding the changes in refractive 
index requires rather more attention. Following 
Nye [12], the ellipsoid which defines the refractive 
indices (the indicatrix) has the equation 

x! xA x3 
n~ +n~ +n~ = 1 (6) 

where xl, x2, x3, the principal axes of the dielectric 
constant tensor, are chosen to coincide with the 1, 
2, 3 axes defined in Section 2.1 above, and nl, n2, 
n3 are the principal refractive indices. The equation 
of this ellipsoid may also be written as 

Bijxixj = 1 (7) 

where Bij is the relative dielectric impermeability 
tensor. 

Then the small changes in refractive index pro- 
duced by stress can be conveniently represented 
as small changes in the coefficients Bi.i and we have 

/XB~ = 7r~k~akZ (8) 

where okt are the components of stress and rr~i m 
is a fourth rank tensor describing the photoelastic 
behaviour. In this paper we are concerned only 
with normal stresses applied along principal axes. 
We can, therefore, adopt a contracted nomenclature 
with the normal stresses olj represented by ai (as 
in Equation 1 above) and the changes in the coef- 
ficients along the principal axes ABij given by 

ABij = &Bi = rrij(r j. (9) 

Again, since 

1 - -2  
Bi = _-5, A B i  = - -  Ani 

H i n~ 

and we can write 

Ani = ~rijcrj (I 0) 

where we have taken up the factor--2]n~ in the 
definition of our simplified photoelastic constant 

t 

matrix rro. 
Combining Equations 1 and 10 with Equation 

4 we can then express the fringe shift in the air 



interferometer formally as 

2t 
zSm~ = -~ [(ni - 1 )  S2j + ~ul oj. (11) 

We have adopted a superscript notation for Am 
which corresponds exactly to the subscript notation 

t 
for the rrij. It is also to be noted that we are only 
concerned in these measurements with the compli- 
ance constants Szj, where j = 1,3. Similarly for an 
interferometer with a water cell in which the 
sample can be immersed in one beam the fringe 
shift is given by 

2t 
Am~ = -~ [(n i -  1.33)$2i + ~ij]oj. (12) 

There are, therefore, eight different experiments 
which can be performed very simply. First, we can and 
choose polarization conditions with the electric 
vector along either the 3 or 1 direction for the 
sample loaded along the 3 or 1 directions. Secondly 
the experiments can be undertaken with the 
sample in air or immersed in water. For the former 
situation these experiments yield the following 
fringe shifts which are denoted by the suffix a. 

(i) Sample loaded along 3 direction 
(a) Electric vector along 3 direction 

2t 
am~ 3 = T [ (n3- -1 )S=a+~3do  ~ (13) 

(b) Electric vector along 1 direction 

2t 
Am 13 = ~- [(nl--  1) S23 -b zr'13] o (14) 

(ii) Sample loaded along 1 direction 
(a) Electric vector along 3 direction 

2t 
2Xma 31 = ~- [(n3-- l)S=l+Tr3a]ol (15) 

(b) Electric vector along 1 direction 

2t 
Amaa 1 = --~ [(nl--1)Szl +rrn]el (16) 

For the case where the sample is immersed in 
water the corresponding fringe shifts are denoted 
by the suffix w and are given by the equations 

2t 
Am~ = -s [(na-- 1.33)$23+ 7r;3]a3 (17) 

2t 
Am~ = ~- [ (n , - -  1.33)$23 + 7r'13] o3 (18) 

2t 
Am~ = -~- [(n3-- 1.33) S2a + rr3,] ol (19) 

2t 
and Am~ = - -  [(nl -- 1.33) $21 + 7r'n] o 1. (20) 

A 

It is, therefore, possible to make two independent 
determinations of each of the compliance con- 
stants. Two values for S~3 are obtained from experi- 
ments which correspond to Equations 13 and 17, 
and 14 and 18, respectively. Two values for $21 
come from the experiments corresponding to 
Equations 15 and 19, and 16 and 20, respectively. 

We have, 

= X(Ama --2xm~) 823 33 33 

0.66t03 

821 
X(ZXma~l 31 - ZXm,~) 

13 13 X(ZXma - /Xmw) 

0.66to3 

(21) 

X(Am~ 1 -- Am~) 

0.66t01 0.66tax (22) 

These experiments also yield values for the photo- 
' ' n'13 and ' which are elastic constants 7rn, 7/33 , 7r31 , 

given by the following equations 

, X [dXm~al (nl--1)(Am~'--Am~) ] 
~ 1 1 -  2t-ol 

(23) 
33 33 ] 

, X 2xm~ 3 _ (n3 -- 1)(Am~: -- 2xmw) 
rraa - 2to3 0.33 ] 

(24) 

13 13 ] 
, X Am~3 _ (nl -- 1)(Am~ ~ -- Amw) 

7 r l s -  2to3 0.33 J 
(25) 

, X [Areal (n3--1)(Am~l--Am~t) ] 
7r31 - 2to1 0.33 

(26) 

3. Experimental 
3.1. Sample preparation 
Samples in the form of lOcm long strips were 
prepared with microtomed edges. This was im- 
portant when cutting specimens with their lengths 
at right angles to the initial draw direction in the 
sheet, where a very rough initial edge was pro- 
duced. 

The length to width ratio was of the order of 
25:1 to eliminate any constraints imposed by the 
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Figure 1 Interferometric arrangement and apparatus for 
measuring Poisson's ratio. 

grips. The cross-sectional areas were determined 
by measuring the width and thickness of the sam- 
ples with a travelling microscope and a micrometer 
respectively. Samples with cross-sectional areas in 
the range 6 x 10 -a to 2 x 10-acre 2 were measured. 

3.2.  A p p a r a t u s  
The basic interferometer arrangement is shown in 
Fig. 1. The load is applied directly to the sample 
by placing weights on the pan P. The interfero- 
meter is illuminated by a sodium lamp, S, the 
ground glass screen, G providing a diffuse source. 
The fringes were viewed with a telescope T, in front 
of which was placed a polarizer. The apparatus was 
maintained level using two spirit levels. 

The sample is held between two clamps, each 
supported by a vertical column so that the two 
columns form a yoke arrangement. The interfero- 
meter is positioned within this yoke, such that the 
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sample is in one of the arms of the interferometer. 
A wire, attached to the moveable clamp, passes 
over a pulley and the load is applied directly to the 
sample by placing weights on the pan fixed to the 
end of the wire. The slots in the clamps enable 
the sample to be immersed in a trough of water. 

The interferometer was adjusted to operate in a 
vertical fringe mode as opposed to the more usual 
concentric ring mode. This requires that the two 
mirrors are slightly offset from being at right 
angles to each other. This produces the situation 
of interference by a thin wedge and hence vertical 
linear fringes are produced. 

The moveable clamp is free to rotate about its 
major axis, allowing the sample to be twisted slight- 
ly about its vertical position. As this is done, the 
fringe shift goes through a minimum condition 
corresponding to the minimum path length increase 
produced by the presence of the sample. In this 
way it is possible to ensure that the sample is 
aligned in the vertical plane. 

3.3. Measurements 
Fringe shifts were determined for a series of  loads 
up to contractions of about 0.3% and 1% for loads 
applied along the draw direction (0 ~ direction) and 
perpendicular to this (the 90 ~ direction) respect- 
ively. Having determined the fringe shift for a 
given applied load, the load was removed and the 
displaced fringes observed to return to their zero 
load position. The vertical alignment of the sample 
under extension was always checked as there was a 
tendency to twist which can produce a false fringe 
shift. 

Measurements were made for both vertical and 
horizontal polarization in both air and water. To 
check the effect of  the sample being immersed in 
water, measurements were made of sample exten- 
sion as a function of load. This was done by 
measuring the displacement of the moveable clamp 
with an extensometer. For a range of loads it was 
verified that the sample extension was unaffected 
by the surrounding water. This is in accord with 
expectations, since it is known from previous work 
that the mechanical properties of  PET are only 
affected by moisture at elevated temperatures, 
when the material approached the glass transition. 

The time dependence of the mechanical re- 
sponse is very small in PET at room temperature. 
In a previous paper [10] it was shown to be • 3% 
in Sn  and $33 from los  to 103 secs. Although 
this is not likely to be detectable within the accu- 
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Figure 2 Cal ibrat ion  o f  load  appl ied  to sample :  (a) for  loads  appl ied  paral led to d r a w  d irect ion;  (b)  for  loads  appl ied  at 
9 0  ~ to d r a w  d irec t ion .  

racy o f  the present measurements,  the fringe shifts 
were always determined as near as possible to 
10 secs after the application o f  the load. 

4 .  Resu l ts  

Preliminary measurements established that there 
was a very satisfactory linear relationship between 
the fringe shift and the applied load. The straight 
lines did not,  however,  pass through the zero load 
point. For both sample directions it was therefore 
decided to carry out a direct calibration o f  the 
relationship between the stress applied to the 
sample and the applied load. This was done be 
inserting a piezoelectric transducer into the point 
A, and comparing the load acting on the specimen 
directly with the applied load. The results o f  this 
calibration are shown in Fig. 2a and b. It can be 
seen that although the initial frictional constraints 
differ for the two sample directions, the relation- 
ship between the applied load and that measured 
by the transducer is a linear one with a proportion- 
ality constant which is unity within the experi- 
mental error. 

This calibration was used to produce the final 
plots o f  fringe shift as a function o f  the load 
applied to the sample. Results for the case where 
the load was applied at 90 ~ to the draw direction 
are shown for two samples in Figs. 3 and 4. Simi- 
larly, the results for two samples with the load 
applied in the draw direction are shown in Figs. 5 
and 6. It can be seen that in nearly all cases the 
results can be very well represented by a straight 
line passing through the origin. The data are most  

definitive where the fringe shifts are large for 
comparatively small applied loads, e.g. Figs. 3 and 
4 for the cases 2ena 31 and z2~rnw 31 . Where the 
fringe shifts are very much smaller, the results are 
clearly less reliable, and there is one case 2~'nw 33 , 
shown in Fig. 5 and 6, where it does not  appear 
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satisfactory to include the results in the final 

determination of the compliance constants. 
The results obtained from the gradients in Figs. 

3 to 6 are summarized in Tables I and II. Using 
Equations 21 and 22 we can make two determi- 

nations of $21 and S2a for each sample. These are 

shown in Table III, with the values of $33 obtained 
from 2xrnw 33 shown in brackets. As already men- 

tioned these results are unreliable although they, 
in fact, do appear to just show a greater scatter 
about the same mean value. The final average 
values for the compliances $21 and S2a are $21 = 

TABLE I Fringe shift data for load applied at 90 ~ to 
draw direction 

Sample Mode Zxm~ 1 Am~ ~Xma H ~m~ 

A Fringe shift 4.40 2.50 2.30 0.65 
per kg 

A Fringe shift 2.76 1.57 1.45 0.41 
per unit stress 
10-7 m 2 N-1 

B Fringe shift 5.9 3.9 3.25 1.3 
per kg 

B Fringe shift 2.8 1.86 1.60 0.62 
per unit stress 
10-7 m 2 N-1 



TABLE II Fringe shift data for load applied parallel to 
draw direction 

Sample Mode am~ ~ Arn~ am~ 3 am~ 

A Fringe shift 1.05 0.70 0.68 0.28 
per kg 

A Fringe shift 3.16 2.10 2.05 0.84 
per unit stress 
10-8 m s N-l 

B Fringe shift 1.20 0.70 0.70 0.25 
per kg 

B Fringe shift 2.90 1.69 1.69 0.60 
�9 per unit stress 

10 -8 m 2 N-' 

--3.8 -+ 0.4 x 10 -1~ m 2 N -I and $23 =--0.37 -+ 
0.02 x 10 -a~ m 2 N -1 . 

Although in principle the experiments should 
also yield values for the photoelastic constants,  
inspection of  the actual results in terms of  
Equations 23 to 26 shows that  these depend on 
comparatively small differences between large 
quantities,  and with the exception of  ~r'13 show a 
large scatter. These calculations were therefore not  

proceeded with. 

5, Discussion 
The values obtained for $21 and $23 are of  most 
interest when compared with the other compliance 
constants for the or thorhombic sheet, and with 
similar compliance constants for fibres. Table IV 
shows some collected values o f  compliance con- 
stants and Poisson's ratios. The values for Sa 1 and 
$33 were obtained from measurements of  exten- 
sional creep in a dead loading creep machine, and 

refer to the 10sec response at 0.1% strain. The 

value o f  S13 was obtained from the deformation of  

an electron microscope grid printed on the surface 

of  the sample, and its determinat ion is described in 
a separate publication [13].  The values of  the 

fibre compliance constants are taken from a pre- 
vious publication [8].  Because o f  the different 
techniques employed to determine different 
constants the values for the different elastic con- 
stants are not exactly comparable.  Care was taken 
to measure the 10sec response in all cases, but  
there are some differences with regard to stain 
level and possible non-linearity. The present data 
show no signs o f  non-linearity,  although such 
efffects were seen in the determinations of  S l l ,  
$33 and Sa3. I t  must be emphasized, however, that  
the effects are very small (",, 5%) at the low levels 
of  strain involved, compared with the differences 
between the different compliance constants. Table 
IV shows that  these differ in some cases by  more 
than one order o f  magnitude. With minor reser- 
vations, we can therefore proceed to discuss the 
general nature o f  the mechanical anisotropy.  

In the first instance it can be commented that 

the magnitudes o f  $21 and $23 are certainly in 
keeping with expectations on physical grounds, 

based on the values o f  the other elastic constants 
SIx,  $33 and S~3. The or thorhombic sheet is very 
anisotropic, with $33, the compliance along the 
draw direction, being about seven times smaller 
than Sxl ,  that  perpendicular to the draw direction. 
This is to be expected because $33 will involve,  
some element of  bond stretching and bond  bend- 
ing, whereas S]1 can be at tr ibuted largely to trans- 
verse dispersion forces. Thus it is not unreasonable 
that  the stiffness along the draw direction is about 
an order of  magnitude greater than that  perpen- 

dicular to the draw direction. I t  also follows from 
such considerations that  i f  the polymer is stressed 

TABLE III  Values ofS21 andSss (10 -~~ m s N -1) 

Sample $21 Average value $23 Average value 
of $21 of $2~ 

A --4.2, --3.7 --0.35, (--0.40) 
--3.8 -+ 0.4 --0.37 • 0.02 

B --3.7,--3.6 --0.38, (--0.34) 

TABLE IV Collected values of compliance constants (X 10 -~~ m 2 N -~ ), and Poisson's ratios 

S~1 Ss3 $13 $1I S~ --$21 --$13 --$23 --$13 
P 2 1 -  S~ 1 v 3 1 -  $11 v 2 a -  Sa 3 via ~ - S ~  a 

Sheet --3.8 --0.37 --0.18 4.0 0.76 0.95 0.05 0.48 0.26 
Fibre A --3.9 - --0.47 8.9 1.1 0.44 0.05 - 0.43 
Fibre B --5.8 - --0.31 16.1 0.71 0.36 0.02 - 0.44 
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in a direction perpendicular to the draw direction, 
that the major contraction is likely to take place in 
the direction perpendicular to the chain orien- 
tation (the 2 direction) rather than parallel to the 
draw direction (the 3 direction). Thus we would 
expect the magnitude of $21 to be much greater 
than that of $23. The value of S13 is similar to that 
of $23 which is consistent with this line of argu- 
ment, i.e. the comparative difficulty of defor- 
mation in the 3 direction, compared with the 1 
and 2 directions. The Poisson's ratios reflect the 
same argument, and in particular P31 has the very 
small value of 0.05. 

Secondly, the values of $21 and $23 for the 
orthorhombic sheet are in line with the values of 
the corresponding compliance constants for fibres. 
This can be seen by direct comparison of values 
for $21 (--3.8 for sheet compared with --3.9 and 
--5.8 for fibres) and by the comparability of $23 
and $13 for sheet (--0.37 and --0.18) with fibre 
values of --0.47 and --0.31 for $13. The compari- 
son of the Poisson's ratios for the sheet and fibres 
brings out their comparability more clearly and 
follows from the order of magnitude arguments 
developed in the last paragraph. A more detailed 
comparison between sheet and fibres required 
knowledge of all the elastic constants. 

6. Conclusions 
A novel method has been tested which determines 
two Poisson's ratio compliances for transparent 

polymer sheet of orthorhombic symmetry. The 
results for polyethylene terephthalate sheets show 
reasonable consistency, and the actual values ob- 
tained are in good accord with expectations on 
physical grounds. 
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